A Salmonella Typhimurium-Typhi Genomic Chimera: A Model to Study Vi Polysaccharide Capsule Function In Vivo
نویسندگان
چکیده
The Vi capsular polysaccharide is a virulence-associated factor expressed by Salmonella enterica serotype Typhi but absent from virtually all other Salmonella serotypes. In order to study this determinant in vivo, we characterised a Vi-positive S. Typhimurium (C5.507 Vi(+)), harbouring the Salmonella pathogenicity island (SPI)-7, which encodes the Vi locus. S. Typhimurium C5.507 Vi(+) colonised and persisted in mice at similar levels compared to the parent strain, S. Typhimurium C5. However, the innate immune response to infection with C5.507 Vi(+) and SGB1, an isogenic derivative not expressing Vi, differed markedly. Infection with C5.507 Vi(+) resulted in a significant reduction in cellular trafficking of innate immune cells, including PMN and NK cells, compared to SGB1 Vi(-) infected animals. C5.507 Vi(+) infection stimulated reduced numbers of TNF-α, MIP-2 and perforin producing cells compared to SGB1 Vi(-). The modulating effect associated with Vi was not observed in MyD88(-/-) and was reduced in TLR4(-/-) mice. The presence of the Vi capsule also correlated with induction of the anti-inflammatory cytokine IL-10 in vivo, a factor that impacted on chemotaxis and the activation of immune cells in vitro.
منابع مشابه
The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly,...
متن کاملDifferential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating ...
متن کاملLoss of Very-Long O-Antigen Chains Optimizes Capsule-Mediated Immune Evasion by Salmonella enterica Serovar Typhi
UNLABELLED Expression of capsular polysaccharides is a variable trait often associated with more-virulent forms of a bacterial species. For example, typhoid fever is caused by the capsulated Salmonella enterica serovar Typhi, while nontyphoidal Salmonella serovars associated with gastroenteritis are noncapsulated. Here we show that optimization of the immune evasive properties conferred by the ...
متن کاملMOLECULAR CHARACTERIZATION AND OPTIMIZATION OF VI-CAPSULAR POLYSACCHARIDE OF SALMONELLA TYPHI TY6S PRODUCTION IN BIOREACTOR
The role of Vi-capsular polysaccharide (Vi-CPS) in human immunity against infection caused by Salmonella typhi is well known. The downstream process of purification generally causes depolymerization of Vi-CPS to a nonimmunogenic low molecular weight form. In the present study, a standard strain of Sal. typhi Ty6s was grown under submerge cultural conditions in a pilot-plant scale of 90 Liter fe...
متن کاملComparative growth analysis of capsulated (Vi+) and acapsulated (Vi-) Salmonella typhi isolates in human blood
Salmonella enterica serovar Typhi (S. Typhi) is a human restricted pathogen. It biosynthesizes a virulence capsular polysaccharide named as Vi antigen. S. Typhi regulates expression of genes involved in the biosynthesis of Vi antigen in response to osmolarity. Beside Vi-positive isolates, Vi-negative (acapsulated) isolates are also pathogenic. However, Vi-positive isolates are more prevalent. T...
متن کامل